TEMPERATURE CONTROLLER FOR IMPULSE SEALING

THERMOSALD ISC modular system

- AUTOMATIC CALIBRATION
- ANALISYS ON LINE OF BAND CHARACTERISTICS
- DIAGNOSTIC PANEL WITH 6 LANGUAGES
- SET UP OF SEALING BAND PPM CHARACTERISTIC
- •
- RS 485 INTERFACE (OPTIONAL)
- WORKING WITH POTENTIOMETER
- BURN IN OF SEALING BAND

QUICK START (V5.1)

3E S.r.l. - Via del Maccabreccia 37/a - 40012 LIPPO DI CALDERARA (BOLOGNA)

 Tel. ++39 051 6466225-228
 e-Mail: mail@3e3e3e.com

 Fax ++39 051 6426252
 web site: www.3e3e3e.com

0 WARNINGS

THIS BOOK IS SUPPLIED WITH OUR PRODUCT AND DESCRIBES THE FUNDAMENTAL FUNCTIONS

EMPLOY QUALIFIED AND WELL-TRAINED PERSONNEL, FAMILIAR WITH THE TECHNOLOGY USED TO INSTALL OR MAINTENANCE THE EQUIPMENT, CONSULTING MAINTENANCE & OPERATIONS MANUAL.

0.1 SAFETY PRECAUTIONS

- Never use the equipment in explosive atmospheres or with explosive materials.
- Never use the equipment with flammable material without first taking the required safety precautions.
- Operate the equipment by following the instructions contained in this MAINTENANCE & OPERATIONS MANUAL before doing an installation.
- Never turn on the temperature controller power circuit when the safety guards are open.
- Do not use the temperature controller for tasks other than those it is designed for i.e to control the temperature of bands or wires for industrial-grade sealing. Contact our engineering department for information regarding specific applications.
- Do not deliver electrical power to the temperature controller if the protective cover has been removed for special servicing on the electronic system.
- Employ qualified and well-trained personnel familiar with the technology used, to install and use the equipment.
- Grounding the thermoregulator by yellow-green cable connected to the predisposed screw and by 4 fixing screw.
- Use bands or wires having an adequate positive temperature coefficient >900 PPM (900 part per million, > 900 x 10E-6)
- When the machine is running under normal conditions, make sure the heat sink of the controller does not exceed 60°C. If this happens, increase heat sink ventilation or contact our engineering department.
- When the sealing bands are in parallel pay attention at the connections of the cables that must not be crossed; with the correct connection the current flow in both sealing bands in the same direction and all the points opposite of the sealing bands have the same voltage and in the case of an accidental contact it is not possible having a short circuit between sealing bands and a high current. Viceversa if the sealing bands touch ground, possible case, the thermoregulator blocks up the current immediately.

2 WIRING DIAGRAM AND DIMENSIONS

2.1 LIST OF CHANGE-OVER SIGNALS

CN1	POWER TERMINAL BLOCK (SWITCH ON SECONDARY)	
PIN1	ALTERNATING CURRENT SUPPLY	(4 - 10 sq.mm)
PIN2	ALTERNATING CURRENT SUPPLY	(4 - 10 sq.mm)
PIN3	BAND -	(4 - 10 sq.mm)
PIN4	BAND +	(4 - 10 sq.mm)
NOTE	1: Power supply and control circuit supply with the same phase	
NOTE	2: Twist power cable	

CN1	POWER TERMINAL BLOCK (SWITCH ON PRIMARY)	
PIN1	ALTERNATING CURRENT SUPPLY (230Vac)	(4 - 10 sq.mm)
PIN2		(4 - 10 sq.mm)
PIN3	CONNECT TO 0 VOLTS ON THE SECONDARY OF THE POWER TRANSFORMER	(4 - 10
sq.mm)		
	TO CONTROL LEAKAGE CURRENT TO GROUND	
PIN4	ALTERNATING CURRENT SUPPLY (230Vac)	(4 - 10 sq.mm)
NOTE	1: Power supply and control circuit supply with the same phase	
NOTE	2: Twist power cable	

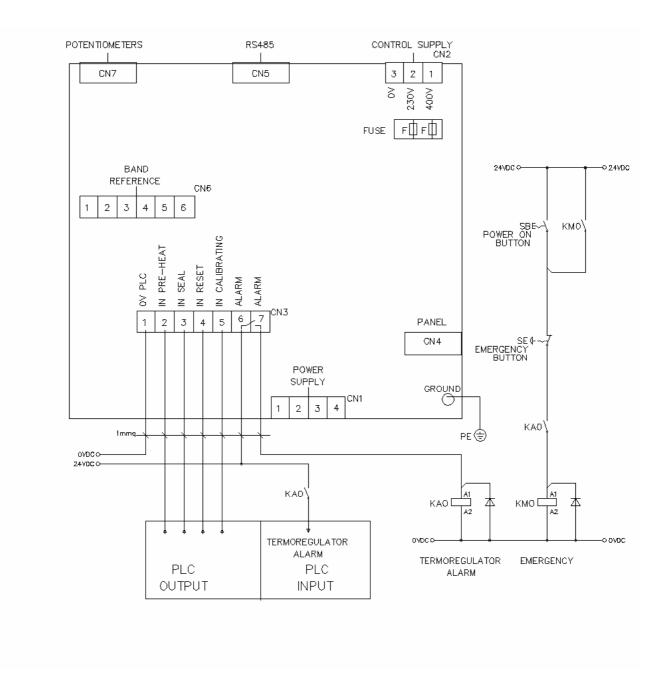
CN2	CONTROL CIRCUIT SUPPLY TERMINAL BLOCK	
PIN 1	400 Vac (0.1A absorption, max)	(1sq.mm)
PIN 2	230 Vac (0.1A absorption, max)	(1sq.mm)
PIN 3	0 Vac (0.1A absorption, max)	(1sq.mm)
NOTE	1: Power supply and control circuit supply with the same phase	-

CN3	CONTROLS TERMINAL BLOCK	
PIN1	COMMON 0 V PLC (24V DC)	(1 sq.mm)
PIN2	IN PRE-HEAT SIGNAL FROM PLC, 24V DC (0V DC) (12 mA absorption, max)	(1 sq.mm)
PIN3	IN SEALING SIGNAL FROM PLC, 24V DC (0V DC) (12 mA absorption, max)	(1 sq.mm)
PIN4	IN RESET SIGNAL FROM PLC, 24V DC (0V DC) (12 mA absorption, max)	(1 sq.mm)
PIN5	IN CALIBRATING SIGNAL FROM PLC, 24V DC (0V DC) (12 mA absorption, max)	(1 sq.mm)
PIN6	OUT SEALING FAULT (CONTACT N.C.) $\cos \Phi = 1$ 250V 8A	(1 sq.mm)
PIN7	OUT SEALING FAULT (CONTACT N.C.) $\cos \Phi = 0.4$ 250V 5A	(1 sq.mm)

CN4 D	ISPLAY PANEL CONNECTOR (15 PIN FEMALE)		
PIN1 -	+5Vcc	Screened	(0,25mmq)
PIN2 () V	Screened	(0,25mmq)
PIN3 S	SPI-SDO	Screened	(0,25mmq)
PIN4 S	SPI-SCK	Screened	(0,25mmq)
PIN5 S	SPI-SDI	Screened	(0,25mmq)
PIN6			_
PIN7			
PIN8			
PIN9 S	SPI-SS	Screened	(0,25mmq)
PIN10 I	RESERVED	Screened	(0,25mmq)
PIN11 I	RESERVED	Screened	(0,25mmq)
PIN12 I	RESERVED	Screened	(0,25mmq)
PIN13 I	RESERVED	Screened	(0,25mmq)
PIN14			_
PIN15			
NOTE 1:	The cable termoregulator-panel must be screened, pin to pin connected -	Max Mt 15	5.

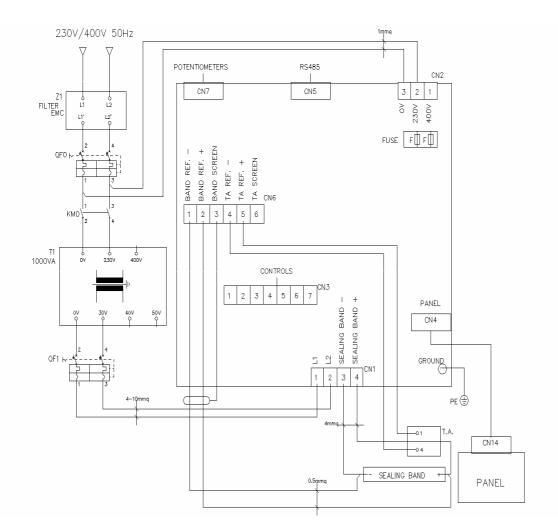
CN5	RS 485 SERIAL INTERFACE CONNECTOR (9 PIN FEMALE)		
PIN3	Channel B+	Screened	(0,25mmq)
PIN8	Channel A-	Screened	(0,25mmq)
NOTE	1: Twist the cables		-

CN6	REFERENCE TERMINAL BLOCK		
PIN1	SEALING BAND REFERENCE REF-	(0,5mmq)	
PIN2	SEALING BAND REFERENCE REF+	(0,5mmq)	
PIN3	SCREEN REFERENCE CABLE REF 0 (Don't connect on machine side)	(1mmq)	
PIN4	REFERENCE TA-	(0,5mmq)	
PIN5	REFERENCE TA+	(0,5mmq)	
PIN6	SCREEN TA CABLE TA0 (Don't connect on machine side)	(1mmq)	
NOTE	NOTE 1: Twist cables or better use cable TWINAX IBM (Ns. cod. 3esd0066)		


CN7	POTENTIOMETER CONNECTOR (9 PIN MALE)		
PIN1	PRE-HEAT POTENTIOMETER +4,58V	Screened	(0,25mmq)
PIN2	PRE-HEAT POTENTIOMETER RIF+	Screened	(0,25mmq)
PIN3	PRE-HEAT POTENTIOMETER 0V	Screened	(0,25mmq)
PIN4	Connect PIN3 to PIN4	Screened	(0,25mmq)
PIN5			
PIN6	SEAL POTENTIOMETER +4,58V	Screened	(0,25mmq)
PIN7	SEAL POTENTIOMETER RIF+	Screened	(0,25mmq)
PIN8	SEAL POTENTIOMETER 0V	Screened	(0,25mmq)
PIN9	Connect PIN 8 to PIN9	Screened	(0,25mmq)
NOTE 1: If conneted to PLC analog output use PIN2, PIN3, PIN7, PIN8 and leave free PIN4-PIN9			
NOTE 2: Twist cables or better use cable TWINAX IBM (Ns. cod. 3esd0066)			

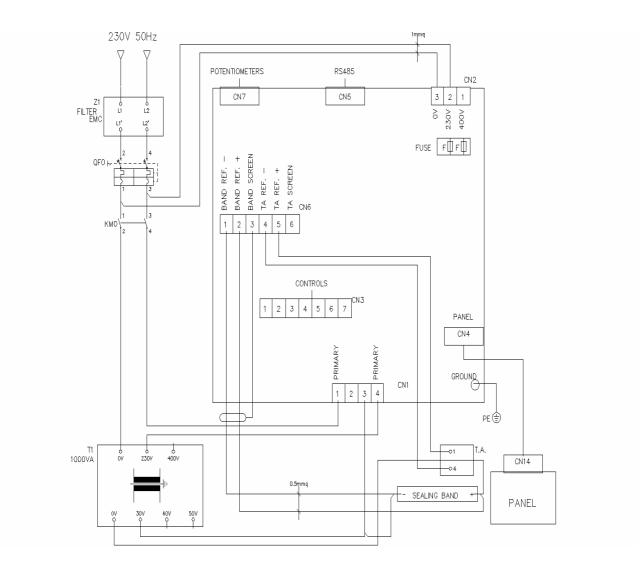
 THERMOSALD ISC – MANUAL QUICK START

 Manual cod.: 3ES080x_V5.1_QS_EN
 Page Nr.
 4


 Includes all previous models

2.2 ELECTRIC DRAW - DIGITAL CONNECTIONS

THERMOSALD ISC – MANUAL QUICK START Manual cod.: 3ES080x_V5.1_QS_EN Page Nr. 5 Includes all previous models


2.2 ELECTRIC DRAW – POWER CONNECTIONS (CONTROL OF THE SECONDARY)

NOTE -Power supply (CN1/1 e CN1/2) must be with the same phase as control supply (CN2/3 e CN2/2). Ground screw must be connected to the ground of machine, with the cable jellow green section > = power cable section. Twist power cable, twist TA cable Twist and screen sealing reference cable

6

2.2 ELECTRIC DRAW - POWER CONNECTIONS (CONTROL OF THE PRIMARY)

NOTE -Power supply (CN1/1 e CN1/4) must be with the same phase as control supply (CN2/3 e CN2/2). Ground screw must be connected to the ground of machine, with the cable jellow green section > = power cable section. Twist power cable, twist TA cable Twist and screen sealing reference cable

THERMOSALD ISC – MANUAL QUICK START Manual cod.: 3ES080x_V5.1_QS_EN Page Nr. 7 Includes all previous models

• CHAMFERED SPECIAL ALLOY ELEMENTS RESISTANCES CHART

Band width (mm)	Band thickness (mm)	Specific resistance R0 Ω / mt
1.5	0.3	1.67
2	0.25	1.59
3	0.1	2.95
3	0.15	1.95
3	0.2	1.50
3	0.25	1.27
4	0.15	1.40
4	0.25	0.96
5	0.2	0.8
5	0.25	0.69
6	0.1	1.6
6	0.2	0.72
8	0.1	1.2
8	0.2	0.51

• T-SHAPE SPECIAL ALLOY ELEMENTS RESISTANCES CHART

Band width (mm)	Band thickness (mm)	Specific resistance R0 Ω / mt
2.8	0.3	0.9
4	0.3	0.6

• BEADED SPECIAL ALLOY ELEMENTS RESISTANCES CHART

Band width (mm)	Band thickness (mm)	Specific resistance R0 Ω / mt
4	0.15	1.4
4	0.25	0.9
6	0.15	0.99
6	0.25	0.6

• CONCAVE SPECIAL ALLOY ELEMENTS RESISTANCES CHART

Band width	Band thickness	Specific resistance R0
(mm)	(mm)	Ω / mt
2.8	0.3	0.9

4 STURT UP

4.1 - STURT UP PROCEDURES - INSPECTING THE SYSTEM AND THE PARTS USED

Stage 1 – In order to properly set up the system, read the instructions given in paragraph 4.8 THEORETIC CALCULATIONS AND DIAGNOSTIC PROCEDURES and 4.9 SETUP PROCEDURES WITH THE AID OF THE MULTI-LINGUAL CONTROL PANEL

Stage 2 - Use a Low Voltage Unit for power transformer outputs up to 10 Volt

Use a Standard Unit power transformer outputs from 11 to 99 V.

Use a High Voltage Unit for power transformer outputs from 100 to 140 V.

Use Primary mode for pulsed currents more than 220Amps.

Stage 3 – Make the system contructed in an workmanshiplike manner.

Stage 3.1 – Use sealing bands supplied by our Company or equivalent (don't use NI-CR sealing bands).

Stage 3.2 – The power cable inside the T.A. must not turn around T.A (only 1 single line inside).

Stage 4 – For any further information, call 3E – ENGINEERING DEPARTMENT.

TECHNICAL NOTES

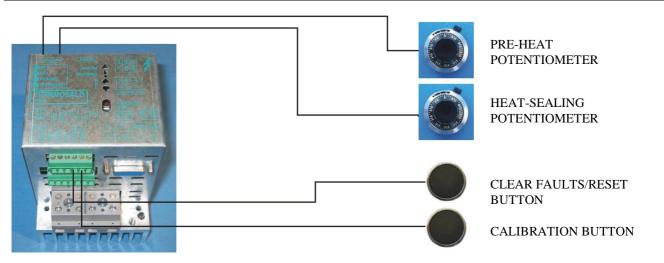

From software **V5.1** it's possible modify the temperature coefficient of the sealing bands in part per milion PPM; modifying the PPM also other parameters will change in automatic as shown in the following table; for compatibility with the previous models the thermoregulator outputs from our factory with the default temperature coefficient PPM=1465 that maintain the heating characteristic and the voltage of the analog input unchanged.

TABLE OF PARAMETERS DEPENDING ON TEMPERATURE COEFFICIENT

	Master Reset					
PPM=	1465	1300	1100	1000	913	750
BIT/°C=	1465 :488= 3	1300 :488= 2.6	1100 :488= 2.2	1000 :488= 2.0	913 :488= 1.8	750 :488= 1.5
T.MAX[°C]=	300	1000:2.6=384	1000: 2.2=454	1000: 2.0=500	1000: 1.8=555	1000: 1.5=666
IN. ANALOG.[mv/°C]	4V/ 300=13.33	4V/ 384=10.42	4V/ 454=8.81	4V/ 500=8.00	4V/ 555=7.21	4V/ 666=6.00
POT.(°C/GIRO)	300 /10= 30	384 /10= 38.4	454 /10= 45.4	500 /10= 50	555/10=55.5	666 /10= 66.6

NOTE: 488, 1000, 4V, 10 are constants

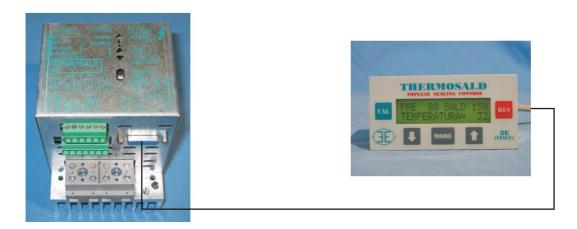
4.2 - PUTTING THE SYSTEM INTO SERVICE – BASIC SETUP (+RS485 OPTION)

Step 1 – Calibrate the system after performing the steps indicated in paragraph 4.1.

Step 2 – The machine should be at ambient temperature

Step 3 – The pre-heat and heat-sealing controls should be inactivated

Step 4 – Power up the temperature controller


Step 5 – In the event of faults (the Red ALARM Led lights up), follow the instructions given on the temperature regulator and put the faults right as required (the id. number of the fault can be found by multiplying the pulses emitted by the green Balance Led by 10 (e.g. 9 pulses= 90) + the pulses of the red Balance Led by the units (e.g. 10 pulses=0)

Step 6 – Calibrate the system. Keep the external CALIBRATION button pressed for 3 seconds and wait (the four LEDS on the system go on flashing as long as the the instrument is being calibrated).

Step 7 – The system is ready to start cycling as soon as the calibration procedure has been completed. Set the Heat-Sealing and Pre-Heat temperature by using the respective potentiometers (for resolution see technical note paragraph 4.1).

WARNING – If calibration problems arise, perform a MASTER RESET procedure starting from stage 5 (to perform the MASTER RESET procedure, keep the external RESET + CALIBRATION buttons pressed for 6 seconds; the 4 Leds on the equipment stay on for 3 seconds).

STURT UP THE SISTEM INTO SERVICE – BASIC SETUP – MULTI-LINGUAL CONTROL PANEL (+RS485 OPTION)

Step 1 – Carry out the calibration procedure after performing the steps indicated in paragraph 4.1.

Step 2 – Make sure the machine is at ambient temperature

Step 3 – The Pre-Heat and Heat-Sealing controls should be inactivated.

Step 4 – Power up the temperature controller

Step 5 – In the event of faults (the Red ALARM LED on the temperature controller comes on), follow the instructions given on the control panel and put the faults right as required (the number of the fault occured is displayed on the control panel along with the relevant description in one of the 6 languages provided).

Step 6 – Calibration: keep the CAL button on the multi-lingual control panel pressed for 3 seconds as indicated in the illustration below, Figure 3 (the four LEDS on the equipment go on flashing as long as calibration is being performed). **NOTE:** For further calibration procedures, press buttons CAL+MODE+CAL on the multi-lingual panel in the order given . Also refer to the illustration below, Figures 1+2+3:

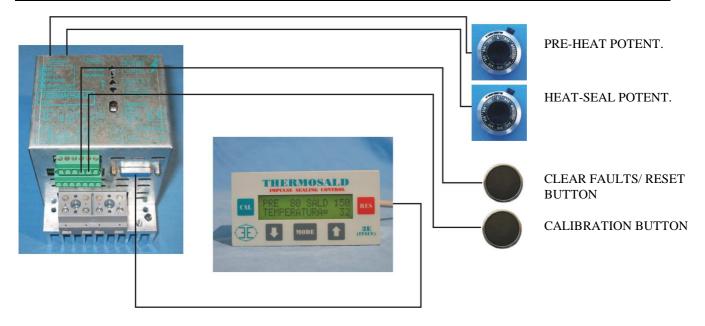
Figure 1

Figure 2

Figure 3

NOTE: Calibration can be carried out from the "outside" as described in paragraph 4.2 with the basic setup.

Step 7 – The system is ready to cycle once the calibration procedure has been carried out. Set the Pre-Heat and Heat-Sealing temperatures (press the MODE+MODE button in the sequence given to access the TEMPERATURE submenu - refer to paragraph 4.7).


Step 8 – To go back to the initial display, press the RES button and follow the instructions given.

THERMOSALD ISC – MANUAL QUICK START Manual cod.: 3ES080x_V5.1_QS_EN Page Nr. 11 Includes all previous models

NOTE – If calibration problems arise, perform a MASTER RESET procedure starting from stage 5. To perform a MASTER RESET procedure, use either of the two modes below: mode 1 – Keep the ARROW DOWN + ARROW UP buttons pressed for 6 seconds. mode 2 - Keep the external RESET+CALIBRATION buttons pressed for 6 seconds. The four LEDS on the equipment stay on for 3 seconds

4.4 - PUTTING THE SYSTEM INTO SERVICE – BASIC SETUP + MULTI-LINGUAL PANEL + POTENTIOMETERS (+RS485 OPTION)

NOTE 1: Perforn the same operations as those described in paragraph 4.3 above.

NOTE 2: To enable the potentiometers, change the MACHINE DATA items = 1, Potentiometers + display. **NOTE 3:** Set the maximum pre-heat and heat-seal temperatures by using the control panel. To step them down, adjust the analog inputs (for resolution see technical note paragraph 4.1).

THERMOSALD ISC – MANUAL QUICK START Manual cod.: 3ES080x_V5.1_QS_EN Page Nr. 12 Includes all previous models

4.7 - OPERATING THE MULTI-LINGUAL CONTROL PANEL

NOTe: The user can go back to the initial display from any video pages by pressing the RES button several times.

LEVEL 1

NOTe: To scroll the sub-menus, press buttons MODE+ARROW DOWN or ARROW UP in the order given.

TEMPERATURE SUBMENU	LEVEL 2
DIAGNOSTIC SUBMENU	LEVEL 2
EMERGENCY TEST SUBMENU	LEVEL 2
BURN-IN SUBMENU	LEVEL 2
DATA SETTING SUBMENU	LEVEL 2
MACHINE DATA SUBMENU	LEVEL 2
INFORMATION SUBMENU	LEVEL 2

NOTE: Press buttons MODE+ARROW DOWN or ARROW UP to access any submenu or parameter.

NOTE: To alter any parameter displayed, proceed as follow:	
Press the MODE button to switch over to modification mode:	? 080
Press the ARROW UP button to alter any data item:	? 081
Press the MODE button to quit the modification mode:	= 081

NOTE: Before saving any changes made, the sy	stem prompt	is the user to confirm the entry:	
THERMOSALD ISC – MANUAL QUICK STAR	Т		Rev. 2010 / 03
Manual cod.: 3ES080x_V5.1_QS_EN Includes all previous models	Page Nr.	13	Tot. Nr . 20

????ENTER???? YES=MODE NO=RES Select YES to confirm, NO to restore the earlier data

$\mathbf{4.8}$ - THEORETICAL CALCULATIONS AND DIAGNOSTIC PROCEDURES WITH THE AID OF THE DATA INPUT PANEL

- 1) Access the DIAGNOSTIC THEORETICAL CALCULATION submenu.
- 2) Enter the data that concern the shape of the strip: length, width, cross-section, number of strips in series, number of strips in parallel.
- 3) Enter the data and quit.

DIAGNOSTIC

- 1) Select the DIAGNOSTIC ANALISYS submenu.
- 2) Scroll the diagnostic video-pages by using the ARROW UP DOWN buttons. These pages contain the electrical specifications that concern the sealing strip: maximum effective currents, resistance, full-wave effective currents, full-wave effective power.
- 3) Each video page indicates 3 values that relate to the same variable under different conditions i.e.: THEORETICAL VALUES, CALIBRATION SETTINGS, REAL TIME VALUE, in particular:

PAGE	1:	IMAX=
	I0=	I=

Where IMAX stands for the maximum pulsed effective currents of the temperature controller, I0 represents the fullwave effective current for calibration and I is the actual full-wave effective current PAGE 2: R THEORETICAL =

2:		R THEOR
	R0=	R=

Where R THEORETICAL stands for the theoretical resistance of the temperature controller, R0 is the calibration resistance and R represents the actual resistance.

	I THEORETICAL =
I0=	I=
	V THEORETICAL =
V0=	V=
	P THEORETICAL =
P0=	P=
	V0=

4) Particularly useful information on the system conditions can be obtained by comparing the three variables so that any malfunctioning and diagnostic problems can be dealt with remotely.

THERMOSALD ISC – MANUAL QUICK START Manual cod.: 3ES080x_V5.1_QS_EN Pa Includes all previous models

Page Nr. 15

4.9 - SETUP PROCEDURES WITH THE AID OF THE CONTROL PANEL

1) Enter the theoretical values (see paragraph 4.8 above)

Calculating total resistance:

V strip=R strip x I heating

(select the nearest one)

Calculating the strip cross-section S:

R strip=specific resistance[Ohm/m] x strip length[m]

Calculating the theoretical pulsed heating currents I: I heating=strip cross-section S[mm²] x 30[Amp/ mm²]

Strip cross-section S[mm²]=strip length[mm] x strip thickness[mm]

Calculating the effective pulsed voltage applied to the strip:

V transformer= V strip x multiplication coefficient (1.5 - 2)

- 2) Access the DIAGNOSTIC ANALYSIS submenu (see paragraph 4.8 above)
- 3) Read the effective pulsed voltage of the strip, THEORETICAL V.
- 4) Set the transformer secondary voltage allowing for a multiplication coefficient of 1.5 2 for pulsed operation and a coefficient of 1.5 for continuous operation:

transformer V = strip V x multiplication coefficient (1.5 - 2), select the nearest one.

4.10 - SETUP PROCEDURES WITHOUT USING THE CONTROL PANEL – MANUAL MODE

sealing speed under pulsed operating conditions and coefficient 1 for continuous operation:

Calculating the transformer secondary voltage allowing for a multiplication coefficient of 1.5 - 2 to increase the

THERMOSALD ISC – MANUAL QUICK START Manual cod.: 3ES080x_V5.1_QS_EN Page Nr. 16 Includes all previous models

ANNEX D – FAULT AND WARNINGS LIST (CAUSES – REMEDIES)

NOTE - To reset every alarm give external reset command or press reset button RES on the panel

NOTE – when an alarm happens, on the thermoregulator the led red of alarm light; it's possible to know the number of alarm reading the multilanguage panel or reading the number of lightening of led red and green: ALARM NUMBER = NR. IMPULSES OF LED GREEN x 10 + NR.IMPULSES LED RED

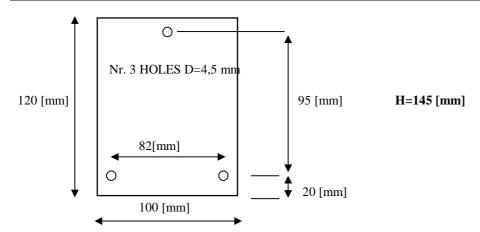
WARNING - ALARM CAUSES Remedies

Includes all previous models

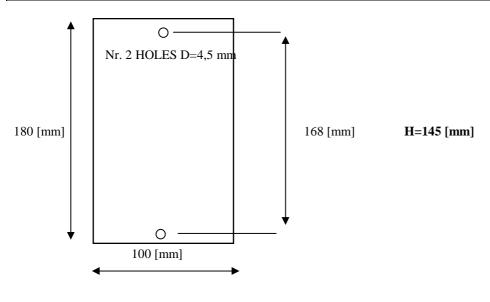
ALARM A	TERMOREGULATOR OFF AND DISPLAY OFF	
	Verify power, Logic supply fault, call the supplying builder.	
ALARM B	TERMOREGULATOR WITH LED OFF AND DISPLAY ON	
	Circuit of synchronisme fault, call the supplying builder.	
ALARM C	TERMOREGULATOR WITH LED ON AND DISPLAY ON AND INDICATIO	N
	"3E SRL + THERMOSALD"	
	Verify cable connection display	
F06	DISPLAY EEPROM FLASH WRITE	
	Switch off and switch on the equipment and call the supplier	
F07	A/D CONVERTER	
	Switch off and switch on the equipment and call the supplier	
F08	INTERNAL TRASMISSION I2C-X	
	Switch off and switch on the equipment	
F09	INTERNAL TRASMISSION 12C-EEPR	
	Switch off and switch on the equipment and verify parameters	
F19	RS485 MASTER - CHECKSUM ERROR	
	Verify checksum selection on the Master or Slave	
F20	RS485 SLAVE - CHECKSUM ERROR	
	Verify checksum selection on the Master or Slave	
F21	RS485 SLAVE - OE ERROR-OVERRUN	
	Following data arrived before reading the previous	
F22	RS485 SLAVE - FE ERROR-FRAME ERROR	
	Data stop bit not arrived	
F23	RS485 MASTER – NO ANSWER FROM SLAVE	
	After a Master calling no answer received from the slave	
F24	RS485 SLAVE - TOO DATA REQUESTED FROM MASTER OR WRONG AD	DRESS
	Master has requested to the slave too many data or a wrong address	
F25	RS485 SLAVE – BUFFER FULL	
	Slave Buffer is full because of too many data trasmitted or too frequently trasmitted	
F26	RS485 MASTER - OE ERROR-OVERRUN	
	Following data arrived before reading the previous	
F27	RS485 MASTER - FE ERROR-FRAME ERROR	
	Data stop bit not arrived	
F28	RS485 MASTER - TOO DATA REQUESTED FROM SLAVE OR WRONG AD	DRESS
	Slave has requested to the master too many data or a wrong address	
F29	RS485 MASTER - BUFFER FULL	
	Master Buffer is full because of too many data trasmitted from the slave	
F33	NO VOLTAGE ON POWER TRASFORMER	
	Verify power on CN1/L1,L2, verify power trasformer circuit	
F34	DON'T USE	
F35	CALIBRATION REQUEST	
THERMOSA	ALD ISC – MANUAL QUICK START	Rev. 2010 / 03
	: 3ES080x V5.1 OS EN Page Nr. 17	Tot. Nr . 20

	Used in distance control RS485
F36	CALIBRATING IN PROGRESS
	Used in distance control RS485 to know when calibrating end.
F38	THE MACHINE IS WAITING A COOLING DOWN DURING A CALIBRATION PROCEDURE
	Wait please
F46	NO CURRENT SIGNAL
	Verify sealing band connection, TA connection
F47	TA SIGNAL WRONG TURNED
	TurnTA connection
F48	PRE-HEATING POTENZIOMETER NO CONNECTED OR CABLES BROKEN
	Verify pre-heating potenziometer connections and cables
F49	SEALING POTENZIOMETER NO CONNECTED OR CABLES BROKEN
	Verify sealing potenziometer connections and cables
F51	WIPER-I
	Switch off and switch on the thermoregulator; if problem persist call the supplying
F52	WIPER-V
	Switch off and switch on the thermoregulator; if problem persist call the supplying
F53	WIPER-VGROSS
	Switch off and switch on the thermoregulator; if problem persist call the supplying
F54	WIPER-VFINE
	Switch off and switch on the thermoregulator; if problem persist call the supplying
F60	RESET WITH CALIBRATING IN PROCESS
F (4	Repeat the calibrating
F61	BALANCE UNSUCCESSFULL
EC2	Repeat the calibrating
F62	BALANCE V UNSUCCESSFULL Banaot the calibrating
F63	Repeat the calibrating BALANCE VGROSS UNSUCCESSFULL
F 03	Repeat the calibrating
F64	BALANCE VFINE UNSUCCESSFULL
104	Repeat the calibrating
F65	BALANCE UNSUCCESSFULL
100	Repeat the calibrating
F66	MAIN PHASE SYNCHRONISM
	Reset the thermoregulator if problem persist call the supplying
F69	CURRENT TO GROUND
	Verify sealing bands in the machine touch ground.
F71	FAULT HARDWARE –15V INTERNAL
	Reset the thermoregulator; if problem persist call the supplying
F72	FAULT HARDWARE +15V INTERNAL
	Reset the thermoregulator; if problem persist call the supplying
F73	FAULT HARDWARE +5V INTERNAL REFERENCE
	Reset the thermoregulator; if problem persist call the supplying
F76	IREAD TOO HIGH
	Verify if short circuit on the seals
F78	THERMOREGULATOR NOT CALIBRATED
	Do a calibrating
F79	FAULT OF EMERGENCY CIRCUIT
	Verify contactor power, verify emergency chain

F081	FAULT HARDWARE - CHECK-SUM
	Data in the eeprom wrong, pay much attention please
	Press button RES, verify TEMPERATURE, SETTING, MACHINE, DATA;
	call the builder
F082	LOGIC SUPPLY (CN2) AND POWER SUPPLY (CN1) HAVE DIFFERENT PHASES
	Verify that the supplies have the same fase
F083	REFERENCE CABLE WRONG TURNED
	Turn reference cable: (CN1/3 WITH CN6/1 - CN1/4 WITH CN6/2)
F085	SEALING TIME HIGHER THEN MACHINE DATA "SEALING TIME"
	Increase machine data sealing time (If 0 the controll is off).
F089	BAND BROKEN IF THE BANDS ARE PARALLEL CONNECTED
	Verify the bands.
F090	SHORT CIRCUIT BETWEEN THE BANDS OR BETWEEN A BAND AND GROUND IN THE
	CASE OF HIGH CURRENT
	Verify bands, verify power connection between thermoregulator and bands
F092	POWER PART FAILURE
	Reset the thermoregulator; if problem persist call the supplying
F093	BAND BROKEN DURING A SEAL
	Verify power on the transformer, Verify voltage on CN/1 CN/2 connector, verify breaking of power cables,
	verify breaking of bands.
F094	REFERENCE SIGNAL CABLE FROM BANDS IS INTERRUPTED
	Verify the connection of reference signal cable from band (CN6/1 - CN6/2)
F095	MAIN SUPPLY SYNCRONISM DOES NOT MUCH MACHINE REQUIREMENTS
	Internal hardware problem, call the supplying builder
F096	FAULT V-I TOO HIGH
	Saturation of the voltage circuit, verify connection, probable break of one seal, if seals in parallel.
F097	PARTIAL SHORT CIRCUIT BETWEEN THE BANDS
	Verify bands into machine probably not perfectly isolated.
	If the problem persist repeat burn-in procedure or do calibrating.
	To reduce the problems increase machine data partial short circuit
F099	FAULT GENERIC
	call the builder


ANNEX E – MECHANICAL DIMENSIONS

PANEL BORING (DIGITAL PANEL 96x48 - BACK DIMENSION 86x40.5)



H=55+CONNECTION [mm]

TOP VIEW TERMOREGULATOR 60 AMPERE + 90 AMPERE AND HOLES FOR PANEL MOUNTING

TOP VIEW TERMOREGULATOR 90 AMPERE (OBSOLETE) AND HOLES FOR PANEL MOUNTING

THERMOSALD ISC – MANUAL QUICK START Manual cod.: 3ES080x_V5.1_QS_EN Page Nr. 20 Includes all previous models